MicroRNA-145 induces apoptosis of glioma cells by targeting BNIP3 and Notch signaling

نویسندگان

  • Yan Du
  • Juan Li
  • Tao Xu
  • Dan-Dan Zhou
  • Lei Zhang
  • Xiao Wang
چکیده

MicroRNAs (miRNAs) are involved in the pathogenesis of various human cancers. Here we show that miR-145 expression is decreased in human glioma samples, rat glioma tissues, and glioma cell lines, while expression of BNIP3 is increased. Over-expression of miR-145 or suppression of BNIP3 induced glioma cell apoptosis. BNIP3 is localized in the nucleus in glioma cells, and miR-145 inhibits BNIP3 expression by binding to the 3' untranslated region of its mRNA. Interestingly, miR-145 and BNIP3 regulate glioma cell apoptosis by modulating Notch signaling. These results indicate that miR-145 increases glioma cell apoptosis by inhibiting BNIP3 and Notch signaling, and suggest that miR-145 may serve as a novel therapeutic target for malignant glioma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Down-regulation of microRNA-23b aggravates LPS-induced inflammatory injury in chondrogenic ATDC5 cells by targeting PDCD4

Objective(s): Osteoarthritis (OA), characterized by degradation of articular cartilage, is a leading cause of disability. As the only cell type present in cartilage, chondrocytes play curial roles in the progression of OA. In our study, we aimed to explore the roles of miR-23b in the lipopolysaccharide (LPS)-induced inflammatory injury. Materials and Methods: LPS-induced cell injury of ATDC5 ce...

متن کامل

MicroRNA-145 Protects Cardiomyocytes against Hydrogen Peroxide (H2O2)-Induced Apoptosis through Targeting the Mitochondria Apoptotic Pathway

MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, has been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia/reperfusion induced cardiac injury. Here, we report microRNA-145, a tumor suppressor miRNA, can protect cardiomyocytes from hydrogen peroxide H₂O₂...

متن کامل

Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling.

OBJECTIVE Curcumin as an effective anticancer bioactive extract has been proved to induce apoptosis in many cancer cells. Notch signaling regulates prostate cancer apoptosis, but it is still unknown whether curcumin induces apoptosis in DU-145 cells by regulating Notch pathway. The aim of this study was to investigate the effect of curcumin on regulating Notch signaling and provide basic data f...

متن کامل

Naringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway

Naringenin is a natural compound with potential anti-cancer effects against several cancer types.  Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...

متن کامل

Naringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway

Naringenin is a natural compound with potential anti-cancer effects against several cancer types.  Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017